Correction exercices : Caractéristiques des ondes

Exercice 4

1. Retard
$$\underline{\tau} = 4 \text{ div x 5 ms/div} = \underline{20 \text{ ms}}$$

2. Célérité
$$V = \frac{D}{\tau}$$

$$V = \frac{20}{20.10^{-3}} = 1,0.10^3 \text{ m.s}^{-1}$$

Exercice 7

1-

- a. Les crêtes sont équidistantes.
- b. La distance entre les deux crêtes s'appelle la longueur d'onde λ ou périodicité spatiale.

2-

- a. La durée qui sépare deux vagues successives est constante.
- b. Cette durée s'appelle la période T ou la périodicité temporelle.
- 3- Relation : $\lambda = Vx T$

Exercice 8

 1- a. La longueur d'onde λ est la plus petite distance séparant deux points du milieu présentant le même état vibratoire.

b. Relation :
$$\lambda = Vx T$$

2)
$$3.\lambda_1 = AB = 3 \text{ cm}$$
 $\frac{\lambda_1}{\lambda_1} = 3/3 = 1 \text{ cm}$

$$\underline{V_1} = \lambda_1 / T = \lambda_1.f_1 = 1.10^{-2}x8,0 = \underline{8.10^{-2} \ m.s^{-1}}$$

3)
$$4.\lambda_2 = AB = 3 \text{ cm}$$
 $\lambda_2 = 3/4 = 0.8 \text{ cm}$

$$\underline{V_2} = \lambda_2 / T = \lambda_2.f_2 = 0.8.10^{-2} \text{x} 17 = \underline{0.1 \text{ m.s}}^{-1}$$

La vitesse varie avec la fréquence.

Exercice 12

1. La hauteur du son est sa fréquence fondamentale : f = 1/T avec 3.T = 0.024 donc $T = 8.0.10^{-3}$ s

$$f = 125 Hz$$

- 2. Les fréquences apparaissant sur ce spectre sont la fréquence fondamentale et ses harmoniques.
- 3. Ces deux sons possèdent la même fréquence fondamentale mais les harmoniques sont différentes en nombre et en amplitude. Ces deux sons n'ont pas le même timbre.

Exercice 23

- 1. La fréquence fondamentale de la cloche est $f_1 = 130 \text{ Hz}$ NOTE : do2
- 2. La relation $f_n = n.f_1$ ne s'applique pas à la cloche car plusieurs fréquences ne sont pas des multiples entiers de f_1 .
- 3. Le spectre de la fontaine est constitué de plusieurs fréquences mais les pics de fréquences ne sont pas espacés. Le spectre est continu. On ne peut pas déterminer la fréquence fondamentale.
- 4. Pour un physicien, un phénomène sonore est qualifié de son s'il possède une fréquence fondamentale et des harmoniques (multiples du fondamental). Sinon, ce phénomène est considéré comme un bruit.

Exercice 24

- 1. Lorsque la profondeur de l'eau diminue, la longueur d'onde diminue aussi. Or la vitesse de l'onde : $v = \lambda f$. La fréquence f étant constante, la vitesse de l'onde diminue lorsque la profondeur diminue.
- 2. On observe un changement de direction de l'onde lorsque le milieu change et que la plaque n'est plus parallèle à la crête des ondes. (Lorsque la plaque P est parallèle à la crête des ondes, l'angle d'incidence est nul). C'est le phénomène de réfraction.

3.
$$V_1 = \frac{g}{2\pi f} = \frac{9.8}{2.\pi 5.0} = 3.1.10^{-1} \text{ m.s}^{-1}$$
 λ_1

$$\lambda_1 = \frac{V_1}{f_1} = \frac{3,1.10^{-1}}{5,0} = 6,2.10^{-2} \,\mathrm{m}$$

$$V_2 = \frac{g}{2\pi f_2} = \frac{9.8}{2.\pi .10} = 1,6.10^{-1} \,\mathrm{m.s^{-1}}$$

$$\lambda_2 = \frac{V_2}{f_2} = \frac{1, 6.10^{-1}}{10} = 1, 6.10^{-2} \text{ m}$$

4. a-
$$t_2 - t = t_2 = \frac{d}{V_1} = \frac{10}{3,1.10^{-1}} = 32 \text{ s}$$

b-
$$t_2 - t = t_2 = \frac{d}{V_2} = \frac{10}{1,6.10^{-1}} = 63 \text{ s}$$